产品中心


产品中心

活性炭吸附-Fenton氧化联合工艺深度处理造纸废水的研究

日期:2024-02-21 23:20:48 作者: 爱游戏电竞app

  [摘 要] 采用活性炭吸附Fenton氧化,研究不同工艺参数对 COD 去除率的影响效果。研究根据结果得出:活性炭吸附实验的最佳条件是在 pH=6.0,活性炭投加量为9.0g/L,吸 附 时 间 为60min,COD 为131.9mg/L,COD的去除率最高,为16.8%,色度的去除率为46.7%;经过活性炭预处理之后,再进行 Fenton氧化实验的最佳条件是废水的初始pH=3.5,FeSO投加量为0.2mL,反应时间为30min,COD值为42.1mg/L,COD的去除率最高,为73.4%。活性炭吸附 Fenton协同处理工艺适用于造纸废水的处理。

  据环保部统计,2016年造纸废水排放量 为23.67亿吨,占全国工业废水排放量的13%。污水排放中的 COD 为33.5万 吨,占工业COD排放总量的13.1%。造纸废水排放量大,有机污染物浓度高,生物降解性差。传统的生化方法运行成本高、投资大,且难以达到理想的处理效果。因此,急需研究一种更好的深度氧化方法来处理造纸废水。

  活性炭吸附方法具有有机物浓度稳定,反应速度快等优点。近年来,活性炭吸附技术在有机废水净化处理中受到广泛关注。Fenton 氧化简单易操作,反应快速,无需复杂设备。

  因此,本实验采用活性炭吸附 Fenton联合处理造纸废水,并将活性炭引入传统的 Fenton系统。探索不同pH 值、不同剂量、不同反应时间和不一样的温度对 COD 去除率的影 响,为造纸废水净化处理提供新思路、新方法,并为其提供理论依照和指导。

  水样采集于陕西某造纸厂废水二沉池出水口,水质指标:pH=7.45,色度=15,COD=158.5mg/L。

  药品:FeSO4·7H2O:分析纯,天津市天力化学试剂有限公司;氯化钠、无水硫酸钠:优级纯,国药集团;活性炭:分析纯,天津科密欧试剂有限公司;过氧化氢:分析纯(质量 浓度30%),天津市大茂化学试剂厂;10%NaOH、0.1mol/LH2SO4:色谱纯,天津市康科德科技有限公司。

  取100mL水样置于250mL 锥形瓶中,加入一定量清洗预处理之后干燥的活性炭,并置于磁力搅拌器上搅拌一段时间,最后沥出活性炭,取其上清液,测定 COD值。

  将活性炭吸附之后的水样,取100mL水样置于250mL烧杯中,用一定量的 H2SO4或 NaOH 溶液调节废 水 pH,边搅拌边加入一 定量的 FeSO4·7H2O 和30%的 H2O2,在 常温下搅拌一段间之后,用 NaOH 调节pH 值为8,然后加入一滴PAM,静置,取其上清液,测定 COD值。

  在 Fenton氧化反应体系中,初始值 pH、摩尔比 M、FeSO4·7H2O 投 加 量、反应时间等均对COD处理效果有影响。为了全面考察各影响因素,设计了4因素3水平的正交试验表。具体正交试验设计条件见表1。

  由正交试验表1可得:Fenton氧化深度处理造纸废水影响先后顺序为:FeSO4·7H2O 投 加 量>

  摩尔比 M(=H2O2∶Fe2+pH 值>

  反应时间。

  由图1可知,随着 FeSO4 投加量的增加,脱墨浆废水的 COD 均会降低。在 Fenton反应过程中,Fe2+作为催化产生 HO·必要条件是反应中的催化剂,当 Fe2+的浓度较低时,HO·的生成产量和速度都随之变小,因此去除率变得较低。在 Fenton反应30min 时,FeSO4投加量 为 0.5g/L、0.6g/L、0.8g/L的 COD降解率几乎相同,且均达到了45%以上。

  如图2所示,考察 Fenton氧化+活性炭共同处理水样时,不同 FeSO4投 加 量 对 COD 去除效果的影响。与图1对比能够准确的看出,当加入活性炭时 COD的去除率明显优于 Fenton。当 FeSO4投加量为0.5g/L,Fenton反应30min,脱墨浆废水的 COD 去除率最大,达到了45.6%;当FeSO4投加量为0.5g/L,Fenton+活性炭反应30min,加入活性炭3g/L 时,脱墨浆废水的 COD去除率最大,达到了55.1%。

  由图3可知,在活性炭投加量=9.0g/L 时,废水的 COD 值最低,为 132.4mg/L,COD 去除率最高 ,为16.4%,色度的去除率为46.7%。随着活性炭投加量的增加,COD值在不断降低,在9.0g/L时COD值最低,去除 率 最 高。当活性炭投加量>

  9.0g/L,COD值的变化不太明显。这是因为活性炭对废水中有机物的吸附主要发生在活性炭表面分布的活性位上,随着活性炭的增加,向体系中提供的孔道容积、活性位的数量以及比表面积均有所增加,所以吸附废水中有机物能力增强。但是随着活性炭投加量的增加,孔道容积、活性位的数量以及比表面积都会增加,然而废水中有机物的含量一定,导致活性炭的含量远超过有机物的含量,故活性炭的投加量对废水的COD值的变化不是很明显。因此结合经济性考虑,本次实验选择活性炭的投加量9.0g/L。

  由图4可知,随着吸附时间的增加,废水的COD值不再降低,当吸附时间为60min时,废水的COD值最低,为133.1mg/L,COD的去除率最高,为16.2%,色度的去除率为46.7%。这是由于活性炭表面具有孔隙结构和比表面积,能够有效地吸附废水中的有机污染物。但当活性炭吸附到一段时间时,孔隙结构和比表面积的吸附就会达到平衡,因此COD值不再降低,COD去除率将不再增加。因此,选取60min作为活性炭的最佳吸附时间。通过以上结论,活性炭吸附实验的最佳条件是在pH=6.0,活性炭投加量为9.0g/L,吸附时间为60min时,废水的COD值最低,为131.9mg/L,COD的去除率最高,为16.8%,色度的去除率为46.7%。

  Fenton试剂通常只在酸性条件下发生作用,一般而言,Fenton反应在pH值2~6之间发生反应,pH在3~5之间,羟基自由基生成速率最大,氧化效果最佳。分别取100mL废水于4个250mL烧杯中,再分别取100mL经活性炭预处理后的废水置于4个烧杯中,在FeSO4·7H2O的投加量为0.183g,30%H2O2投加量为0.05mL,调节废水的pH值分别为2.5、3.5、4.5、5.5,常温下用磁力搅拌器搅拌30min,反应结束后,用10%的NaOH溶液调节pH=8,然后加入一滴PAM,静置,取上清液测COD,记未经预处理的废水的COD为COD1,经活性炭预处理之后的废水的COD为COD2,结果如图5所示。

  由图5能够准确的看出:当pH=3.5时,COD去除率最高,COD1去除率为56.3%,COD2去除率为63.9%,由此能够得出经过活性炭预处理之后COD的去除率比不经过预处理的COD的去除率提高了7.6%。pH值过高或者过低都会使COD的去除率有所下降,根据Fenton试剂的反应原理可知,pH过低,会抑制Fe2+的产生,而pH过高则会抑制羟基自由基·OH的产生,与此同时,溶液中的Fe2+和Fe3+也会失去氧化作用。因此pH=3.5为Fen-ton氧化处理造纸废水的最适pH。

  分别取100mL废水于4个250mL烧杯中,再分别取100mL经过活性炭预处理之后的废水置于4个250mL烧杯中,先调节废水的pH=3.5,然后在30%H2O2投加量为0.05mL,FeSO4·7H2O的投加量分别为0.09g、0.186g、0.279g、0.373g时,使得FeSO4·7H2O与H2O2质量配比分别为1∶1、2∶1、3∶1、4∶1,常温下用磁力搅拌器搅拌30min,反应结束后,用10%的NaOH溶液调节pH=8,然后加入一滴PAM,静置,取上清液测COD,记未经预处理的废水的COD为COD1,经活性炭预处理之后的废水的COD为COD2,结果如下图6所示。

  由图6可知,当m(FeSO4·7H2O)∶m(H2O2)=2∶1时,COD的去除率最高,COD1去除率为57.3%,COD2去除率为66.4%,经过活性炭预处理之后COD的去除率比不经过预处理的COD的去除率提高了9.1%。由图6可以看出,随着Fenton试剂中FeSO4·7H2O的配比的增加,COD的去除率呈现先增加后降低的趋势,这是由于当Fenton试剂中Fe2+的含量较低时,产生的羟基自由基含量也就较少,因此氧化作用就会降低。而当Fenton试剂中Fe2+的含量过高时,多余的Fe2+会被H2O2氧化成Fe3+,从而消耗了H2O2含量,因此只有Fenton试剂的配比处于一定的范围,即配比为2∶1时,COD的去除效果最好。因此本实验选择m(FeSO4·7H2O)∶m(H2O2)为2∶1。

  分别取100mL废水于4个250mL烧杯中,再分别取100mL经过活性炭预处理之后的废水置于4个250mL烧杯中,先调节废水的pH值=3.5,然后在Fenton试剂配比为2∶1的情况下,改变Fenton试剂的投加量,常温下用磁力搅拌器搅拌30min,反应结束后,用10%的NaOH溶液调节pH=8,然后加入一滴PAM,静置,取上清液测COD,记未经预处理的废水的COD为COD1,经活性炭预处理之后的废水的COD为COD2,结果如表2所示。

  由表2可知,当30%H2O2投加量为0.2mL,FeSO4·7H2O投加量为0.805g时,COD1去除率为67.4%,COD2去除率为73.7%。随着Fenton试剂投加量的不断增大,COD的去除率趋于平稳甚至略有下降。这是由于当Fenton试剂投加量达到合适值时,废水中COD的浓度基本维持稳定。如果再增加Fenton试剂的用量,会消耗羟基自由基·OH,从而影响COD的降解效果。同时,Fenton试剂具有絮凝的效果,当加入絮凝剂以后,铁泥的产生量会逐渐增大,会使得后续处理的成本升高,因此Fenton试剂的投加量不宜过高。本实验所选取的Fenton试剂投加量为30%H2O2为0.2mL,FeSO4·7H2O为0.805g为最佳条件。

  分别取100mL废水于4个250mL烧杯中,再分别取100mL经过活性炭预处理之后的废水置于4个250mL烧杯中,先调节废水的pH值=3.5,然后在30%H2O2投加量为0.2mL,FeSO4·7H2O投加量为0.805g时,常温下用磁力搅拌器搅拌15min、30min、45min、60min,反应结束后,用10%的NaOH溶液调节pH=8,然后加入一滴PAM,静置,取上清液测COD,记未经预处理的废水的COD为COD1,经活性炭预处理之后的废水的COD为COD2,结果如图7所示。

  由图7可知,反应时间对COD也有一定的降解作用,随着反应时间的增加,COD去除率开始逐渐增加,当反应时间为30min时,COD的去除率最高,COD1去除率为67.7%,COD2去除率为73.0%。再继续延长时间,COD的去除率略有下降。故Fenton试剂的作用效果有一定的时间。因此综合考虑下,本实验选取反应时间为30min为最佳反应时间。

  通过比较可知,经过活性炭预处理之后Fenton氧化的COD的去除率比单独使用Fenton氧化处理的COD的去除率高6%,因此能得出活性炭预处理对COD的降解起到了一定的效果。

  特别声明:北极星转载其他网站内容,出于传递更加多信息而非盈利之目的,同时并不意味着赞成其观点或证实其描述,内容仅供参考。版权属于原本的作者所有,若有侵权,请联系我们删除。

  2023年,博世科成功签约土耳其某纸业PM6项目废污水处理项目,实现了在土耳其市场零的突破,近期,公司派遣骨干团队“走进”土耳其,高效推进项目实施、拓展市场业务,扩大绿色一带一路朋友圈。土耳其某纸业PM6项目采用最先进的纸机工艺技术。依托在制浆废污水处理领域的技术及实力,博世科成为该项目生产废

  废纸造纸制浆和造纸过程中会产生大量废水,该废水具有COD和SS含量高,可生化性相对较差的特点,若不可以进行有效处理,将对水环境造成严重的污染。另外,随着国家对造纸废水排放标准特别是直排要求的提高,造纸废水的处理问题受到了越来越广泛的关注。目前,对于造纸废水最常用的处理技术是以生化处理为

  制浆造纸工业是国民经济的重要组成部分,也是水污染物排放量较大的行业。根据目前制浆工艺的生产水平,生产1t纸浆,需耗费1.2~2t原木片,产生60~100m的废水。其产生的废水水质、水量与生产工艺、原料、产品种类等密切相关。一般来说,造纸废水中的主要污染物有4类:(1)还原性物质,如木素、无机盐等

  造纸业在国民经济中占有重要位置,位居工业行业废水排放量的第3位。仅次于我国化工与钢铁行业,造纸行业会产生很多的废水污水,废水中的有机物占据我国国内工业废水有机物总量的25%,对自然生态环境产生了很严重的影响,所以必须要减少造纸行业排放的污水,从而实现造纸废水的零排放。现存问题:目前造

  嘉兴市造纸行业全部以废纸为主要原料,年产量600多万吨,废水排放量位居嘉兴市工业行业第二,是工业污染深度削减的重点行业。针对造纸行业废水存在排放量大、废水回用处理过程中容易形成离子累积的堵点、造纸污泥利用和处置效率低等问题,浙江大学牵头承担的“十三五”水专项嘉兴项目“平原河网地区污

  造纸是与国民经济密切相关的产业,也是世界范围内水污染治理的重点行业。目前对于造纸废水环境危害的治理仅局限在消除COD、BOD、悬浮物和色度等常规废水处理指标。但研究发现,造纸废水中含有微量有毒污染物,特别是多环芳烃(PAHs)和无氯苯酚(PCP)等持久性有毒有害有机污染物。这些污染物给生态环

  用铁碳微电解联合过硫酸盐深度处理造纸废水,考察了反应时间、初始pH、铁碳质量比、铁碳总投加量、过硫酸盐(PS)投加量等因素对处理效果的影响,并对不同体系下的废水处理效果进行比较。结果表明:铁碳微电解联合过硫酸盐工艺能够有效深度处理造纸废水,在反应时间为150min、pH=5、m(Fe0):m(AC)=

  中国环境科学研究院、浙江大学等单位联合承担的水专项“十三五”“嘉兴市水污染协调控制与水源地质量改善”项目(以下简称嘉兴项目)自2017年启动以来,历经两年的技术攻关和示范应用,在污染源深度削减、嘉兴智慧环保建设等方面取得阶段性成果,为嘉兴作为生态文明建设示范市创建“十大攻坚行动”方案

  摘要:臭氧催化氧化生物滤池是一种将臭氧氧化和生物活性炭的吸附降解作用联用的工业废水深度处理技术,主要分为两个处理单元:臭氧催化氧化处理系统和生物碳池滤池生化处理系统。通过臭氧预氧化的作用,改变废水生化特性,提高B/C比,通过活性炭吸附水中的溶解性有机物,并富集微生物,长出良好的生物

  摘要:我国造纸废水产生量大,占工业废水总量有较大的比例,且其含有较多的污染物物质,及较高的污染物浓度,直接排放或处理达标将对环境产生较大污染。本文分析了废纸造纸废水的主要来源和废水水质特点,并针对该类废水的污染特性,总结和评价了各类治理技术措施,提出经济可行的处理工艺,希望能够促

  造纸废水成分复杂,其“头号污染源”是从化学浆蒸煮后的产物中分离出来的废液,更难处理。近日,山东农业大学杨越超教授课题组首次发现造纸工艺废液中含有类黄腐酸有机成分,并揭示了类黄腐酸化学结构及分子量与水稻促生长、抗逆作用的关系。相关成果于近日发表在最新一期国际环境领域期刊《环境科学与

  中国招标投标公共服务平台发布新余生态环境产业综合处置利用项目工程勘察设计采购施工(EPC)总承包(一期)项目废气系统集成采购及安装项目中标候选人排序公示公告,紫科装备股份有限公司投标报价1280万元位列中标候选人第一名。该项目拟采用化学洗涤+活性炭吸附工艺。

  广州公共资源交易中心发布广船国际有限公司T206-207涂装车间有机废气治理技术改造项目招标公告,招标内容为相邻2套40000m3/h活性炭吸附脱附+5000m3/hCO系统改造为1套80000m3/h沸石分子筛吸附脱附+10000m3/hCO系统。

  中国石化物资电子招标投标交易平台发布中安联合煤化有限责任公司中安联合分检中心13套废气处理系统中安联合分检中心13套废气处理系统招标公告,招标内容包含活性炭吸附等设施。1.招标条件本招标项目技改:中安联合分检中心13套废气处理系统BW550118-1(WZ2024-B1)招标人为中安联合煤化有限

  中国一汽电子招标采购交易平台发布中国第一汽车股份有限公司新能源动力总成工厂新能源电池电驱基地VOCs废气治理设施采购标结果公告,吉林洁欣环保有限公司中标,中标价119.8万元。本项目采购内容包含活性炭吸附脱附设备、催化燃烧CO设备等。长春一汽国际招标有限公司受中国第一汽车股份有限公司委托,

  中国招标投标公共服务平台发布新余生态环境产业综合处置利用项目工程勘察设计采购施工(EPC)总承包(一期)项目废气系统集成采购及安装项目招标公告,项目预算1700万元,计划采用化学洗涤+活性炭吸附的技术工艺路线。

  铜陵有色电子采购系统平台发布铜陵金泰化工股份有限公司工业废气处理设备评标结果公示,福建卫东环保股份有限公司单位为第一预中标单位。该项目需要1台套两级催化燃烧装置以及1台套活性炭吸附装置。

  由中山市环境科学学会归口的《有机废气活性炭吸附装置技术规范》团体标准,已经编制形成征求意见稿。现公开征求意见。本标准规定了有机废气活性炭吸附装置的一般要求、预处理要求、吸附装置及吸附单元设计要求、活性炭要求、施工与验收、运营管理以及监控要求。本标准适用于炼油与石化、化学原料和化学

  中国招标投标公共服务平台发布重庆嘉陵全域机动车辆有限公司涂装废气深度治理项目中标候选人公示,重庆睿航环保科技有限公司排名第一,投标价格7431700元。该项目计划通过在现有生产厂房内进行技术升级改造,将电泳和烘干外逸废气治理工艺升级为活性炭吸附+催化燃烧(风量60000m3/h),将涂装废气治理

  中国一汽电子招标采购交易平台发布中国第一汽车股份有限公司新能源动力总成工厂新能源电池电驱基地VOCs废气治理设施采购招标公告,采购内容包含活性炭吸附脱附设备、催化燃烧CO设备等。1.招标条件本招标项目招标人为中国第一汽车股份有限公司,招标项目资金来自企业自筹,出资比例为100%。该项目已具备

  铜陵有色电子采购系统平台发布铜陵金泰化工股份有限公司工业废气处理设备(二次)招标公告,该项目需要1台套两级催化燃烧装置以及1台套活性炭吸附装置。铜陵金泰化工股份有限公司现面向国内公开招标采购工业废气处理设备,并拟与中标供应商就该设备采购、售后服务及备件供应等事宜建立长期合作伙伴关系

  中国招标投标公共服务平台发布重庆嘉陵全域机动车辆有限公司涂装废气深度治理项目招标公告,招标范围为涂装废气收集系统2套,通过在现有生产厂房内进行技术升级改造,将电泳和烘干外逸废气治理工艺升级为活性炭吸附+催化燃烧(风量60000m3/h),将涂装废气治理工艺升级为活性炭吸附+催化燃烧(风量1200

  废纸造纸制浆和造纸过程中会产生大量废水,该废水具有COD和SS含量高,可生化性相对较差的特点,若不能进行相对有效处理,将对水环境导致非常严重的污染。另外,随国家对造纸废水排放标准特别是直排要求的提高,造纸废水的处理问题受到了愈来愈普遍的关注。目前,对于造纸废水最常用的处理技术是以生化处理为

  目前,国内大、中型工业废污水处理项目主要采用臭氧氧化+曝气生物滤池(BAF)和Fenton氧化+沉淀过滤这2种深度处理技术。前者适用于废水污染物的臭氧氧化效果好、废水有回用需求的情况,在石油化工、煤化工行业废污水处理中,已基本成为了一种标配工艺,后者则适用于废水无回用需求、污泥处置费用低的项目,主要应用于化纤、印染和造纸等行业的废水处理。

  采用Fenton氧化法对某碳九树脂生产废水进行预处理,通过单因素试验和正交试验,探讨了影响处理效果的诸多因素,确定了最佳处理条件:Fe2+投加量为0.5 gL-1,H2O2投加量为10 mLL-1,pH值为4,反应时间为1.0 h.在最佳处理条件下,废水COD去除率为60.6%—62.7%,TOC去除率为54.3%—58.4%,BOD5/COD(B/C)平均比值由原来的0.21提高到0.51.试验根据结果得出,处理后C9废水可生化性得到了明显的改善.